Warm-up: Using the unit circle, fill in values for the table below.

x	0	$\pi/2$	π	$3\pi/2$	2π
sinx					
cosx					

Parent Graphs for Sine and Cosine Curves

Critical Points (for parent graphs):

Sine Curve

Domain: _____ x-intercepts: _____

Range: _____ y-intercepts: _____

Period: (one complete cycle) _____ Oscillation Line _____

Cosine Curve

Domain: _____ x-intercepts: _____

Range: _____ y-intercepts: _____

Period. (one complete cycle) ————————————————————————————————————	Period: (one complete cycle)	Oscillation Line
---	------------------------------	------------------

Transformations of the Sine and Cosine Curves

Consider the general equations: $y = d + a\sin(bx - c)$ and $y = d + a\cos(bx - c)$

Amplitude and Period (For equations with d = 0 and c = 0)

The constant factor *a* acts as ______.

Amplitude =
$$|a|$$
 = _______.

	Curve	Amplitude	Range	Critical Points	Shape (circle)	Vertical (circle)
a	$y = 3\cos x$				Normal/Reverse	Stretch/Shrink
b	$y = -2\sin x$				Normal/Reverse	Stretch/Shrink
c	$y = 7\sin x$				Normal/Reverse	Stretch/Shrink
d	$y = -\pi \cos x$				Normal/Reverse	Stretch/Shrink

The period of $y = a \sin(bx - c)$ and $y = a \cos(bx - c)$ is given by ______.

	Curve	Amplitude	Period	Critical Points	Shape (circle)	Vertical Stretch (circle)	Horizontal Stretch (circle)
a	$y = 2\sin x$				Normal Reversed	Stretched Shrunk	Compressed Elongated
b	$y = \sin 2x$				Normal Reversed	Stretched Shrunk	Compressed Elongated
c	$y = 2\sin 2x$				Normal Reversed	Stretched Shrunk	Compressed Elongated
d	$y = 4\cos 3x$				Normal Reversed	Stretched Shrunk	Compressed Elongated
e	$y = -3\cos 6x$				Normal Reversed	Stretched Shrunk	Compressed Elongated

f	$y = \frac{1}{2}\sin\frac{1}{2}x$		Normal Reversed	Stretched Shrunk	Compressed Elongated
g	$y = \sin\frac{4}{3}x$		Normal Reversed	Stretched Shrunk	Compressed Elongated
h	$y = -\frac{3}{4}\sin\frac{3}{4}x$		Normal Reversed	Stretched Shrunk	Compressed Elongated

Stens	to	Determine	Critical	Points
	,		CITTURE	I OIII CO

1	2
2	4

Horizontal Translation (Phase Shift) and Vertical Translation

Phase Shift =		
Vertical Shifts = _		

When there is a vertical shift, the graph oscillates about the line ______.

Class Work

	Curve	Phase Shift & Direction	Critical Points	Osc Line	Shape (circle)	Range [,]
a	$y = 3 - \cos x$				Normal Reversed	
b	$y = 1 + 2\cos 2x$				Normal Reversed	
c	$y = -2 - 3\sin 4x$				Normal Reversed	
d	$y = 5\sin(x - 30)$				Normal Reversed	
e	$y = -1 - \cos(x + 15)$				Normal Reversed	
f	$y = 2 + \frac{1}{2}\sin(2x - 10)$				Normal Reversed	
g	$y = \frac{1}{2} - 4\cos(3x + 15)$				Normal Reversed	

	Dusic sine and Cosine Cui ves (Section 11.5)									
h	$y = -\frac{3}{4}\sin(\frac{1}{2}x - 40)$				Normal Reversed					
i	$y = 5 + 3\sin(2x - \frac{\pi}{2})$				Normal Reversed					

Steps for Graphing $y = d + a\sin(bx - c)$ and $y = d + a\cos(bx - c)$

1.	

2. _____

